3.8.86 \(\int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx\) [786]

Optimal. Leaf size=186 \[ \frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {i}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac {i}{4 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

[Out]

(1/8+1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)
/a^(5/2)/d-1/4*I/a^2/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+1/5*I/d/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(
5/2)+1/6/a/d/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 186, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4326, 3627, 3625, 211} \begin {gather*} \frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}-\frac {i}{4 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {1}{6 a d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}+\frac {i}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

((1/8 + I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[
Tan[c + d*x]])/(a^(5/2)*d) + (I/5)/(d*Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)) + 1/(6*a*d*Cot[c + d*x]
^(3/2)*(a + I*a*Tan[c + d*x])^(3/2)) - (I/4)/(a^2*d*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3627

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*b*f*m)), x] - Dist[(a*c - b*d)/(2*b^2), Int[(a + b*Tan[e
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -2^(-1)]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\\ &=\frac {i}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}-\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx}{2 a}\\ &=\frac {i}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac {i}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac {i}{4 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac {i}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac {i}{4 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {i}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac {i}{4 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.75, size = 158, normalized size = 0.85 \begin {gather*} \frac {\cot ^{\frac {3}{2}}(c+d x) \sec (c+d x) \left (30 e^{2 i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right ) \csc (2 (c+d x))+2 \sec (c+d x) (11 i-26 i \cos (2 (c+d x))+20 \sin (2 (c+d x)))\right )}{120 a^2 d (i+\cot (c+d x))^2 \sqrt {a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

(Cot[c + d*x]^(3/2)*Sec[c + d*x]*(30*E^((2*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x)
)/Sqrt[-1 + E^((2*I)*(c + d*x))]]*Csc[2*(c + d*x)] + 2*Sec[c + d*x]*(11*I - (26*I)*Cos[2*(c + d*x)] + 20*Sin[2
*(c + d*x)])))/(120*a^2*d*(I + Cot[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 660 vs. \(2 (146 ) = 292\).
time = 48.94, size = 661, normalized size = 3.55

method result size
default \(\frac {\left (-\frac {1}{120}-\frac {i}{120}\right ) \left (60 i \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right )-30 i \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right )-60 \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \sin \left (d x +c \right ) \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right )+52 i \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-40 i \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right )-45 i \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \cos \left (d x +c \right ) \sqrt {2}+30 \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}+52 \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+40 \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right )+15 i \sqrt {2}\, \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right )+15 \sqrt {2}\, \sin \left (d x +c \right ) \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right )-37 i \sin \left (d x +c \right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+40 i \cos \left (d x +c \right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-37 \sin \left (d x +c \right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-40 \cos \left (d x +c \right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\right ) \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{d \left (4 i \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+4 \left (\cos ^{3}\left (d x +c \right )\right )-i \sin \left (d x +c \right )-3 \cos \left (d x +c \right )\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )^{3} \left (\frac {\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )^{\frac {5}{2}} a^{3}}\) \(661\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

(-1/120-1/120*I)/d*(60*I*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*cos(d*x+c)^3-3
0*I*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*cos(d*x+c)^2-60*arctan((1/2+1/2*I)*
((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*sin(d*x+c)*2^(1/2)*cos(d*x+c)^2+52*I*sin(d*x+c)*((-1+cos(d*x+c))/s
in(d*x+c))^(1/2)*cos(d*x+c)^2-40*I*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3-45*I*arctan((1/2+1/2*I)*((-
1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*cos(d*x+c)+30*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))
^(1/2)*2^(1/2))*cos(d*x+c)*sin(d*x+c)*2^(1/2)+52*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2*sin(d*x+c)+40
*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3+15*I*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^
(1/2))*2^(1/2)+15*2^(1/2)*sin(d*x+c)*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))-37*I*sin(d
*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+40*I*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)-37*sin(d*x+c)*((-1
+cos(d*x+c))/sin(d*x+c))^(1/2)-40*cos(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2))*cos(d*x+c)^3*(a*(I*sin(d*x+c)
+cos(d*x+c))/cos(d*x+c))^(1/2)/(4*I*cos(d*x+c)^2*sin(d*x+c)+4*cos(d*x+c)^3-I*sin(d*x+c)-3*cos(d*x+c))/((-1+cos
(d*x+c))/sin(d*x+c))^(1/2)/sin(d*x+c)^3/(cos(d*x+c)/sin(d*x+c))^(5/2)/a^3

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (136) = 272\).
time = 1.29, size = 368, normalized size = 1.98 \begin {gather*} \frac {{\left (30 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (4 \, {\left (2 \, \sqrt {2} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i}{8 \, a^{5} d^{2}}} + i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 30 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (2 \, \sqrt {2} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i}{8 \, a^{5} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (23 \, e^{\left (6 i \, d x + 6 i \, c\right )} - 34 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 14 \, e^{\left (2 i \, d x + 2 i \, c\right )} - 3\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/120*(30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(4*(2*sqrt(2)*(a^3*d*e^(2*I*d*x + 2*I*c) - a^3*d)
*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(1/8*I/(a^5
*d^2)) + I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-4*(2
*sqrt(2)*(a^3*d*e^(2*I*d*x + 2*I*c) - a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I
)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(1/8*I/(a^5*d^2)) - I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - sqrt(2)*sqrt(a/(
e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(23*e^(6*I*d*x + 6*I*c)
- 34*e^(4*I*d*x + 4*I*c) + 14*e^(2*I*d*x + 2*I*c) - 3))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6191 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((I*a*tan(d*x + c) + a)^(5/2)*cot(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cot(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(5/2)),x)

[Out]

int(1/(cot(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(5/2)), x)

________________________________________________________________________________________